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Abstract 

Quantitative item models are item structures that may be expressed in terms of mathematical 

variables and constraints. An item model may be developed as a computer program from which 

large numbers of items are automatically generated. Item models can be used to produce large 

numbers of items for use in traditional, large-scale assessments. But they have potential for use 

in other areas as well, including diagnostic assessment. In this report, I first review research on 

diagnostic assessment and then discuss how approaches to diagnostic assessment can inform the 

design of diagnostic item models. 

Key words: Automatic item generation, cognitive models, diagnosis, diagnostic assessment, item 

modeling, item models, mathematics assessment 
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The term item model was used by LaDuca, Staples, Templeton, and Holzman (1986) to 

describe classes of items that assess the same content. Bejar (2002) used the term to refer to a set 

of items that share a common set of structural characteristics and psychometric properties. The 

focus of this research is on the development of quantitative item models, the structure of which 

can be expressed in terms of mathematical variables and constraints. An item model may be 

developed as a computer program, from which many items may be automatically generated (e.g., 

Macready & Merwin, 1973; Singley & Bennett, 2002). 

One application of item modeling is to generate large numbers of similar items for use in 

large-scale testing programs. Especially if items may be calibrated at the model level, this 

application may be an economical approach to test development. Research efforts in this 

direction have focused on examining the statistical comparability of model-based items (e.g., 

Meisner, Luecht, & Reckase, 1993; Swygert, Scrams, Thompson, & Kerman, 2006) and the 

evaluation of psychometric models designed to capture familial relationships among similar 

items (Glas & van der Linden, 2003; Sinharay & Johnson, 2005). 

Ideally, item models are developed in accordance with a framework that specifies the goals for 

an assessment. Once they have been developed, item models should be empirically evaluated 

(e.g., Bejar & Yocom, 1991; Embretson & Gorin, 2001). Such an evaluation may result in 

revision to the item models, the underlying framework, or both. A second application of item 

modeling, then, is as a data collection mechanism for evaluating both the item models and the 

underlying framework. This paper focuses on this second application of item modeling. In 

particular, it considers (a) how diagnostic item frameworks may inform item model design and 

(b) how data collected from item models may inform underlying diagnostic frameworks. 

Diagnostic Item Design 

Dimensions of Diagnosis 

Diagnosis can vary along a number of dimensions, including purpose, specificity, and 

focus. In some situations, the purpose of diagnosis is to assess mastery with respect to a set of 

target skills, while in others it is to identify misconceptions or procedural errors. Diagnosis can 

consist of high-level information, or it can highlight a particular step in a solution or protocol. 

The focus of diagnosis may be on an individual or on a very large group of students. The work of 

Brown and Burton (1978) and VanLehn (1983) focused on the identification of procedural 

errors, or bugs, while Minstrell (1992; 2001) used the term facets to refer to students’ developing 
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ideas in a scientific domain. Some facets indicate a low level of understanding that may hinder 

further student learning, while others reflect an expert’s view. 

Depending on the purpose of the diagnosis, either a unidimensional or a 

multidimensional data structure may be more appropriate. If the goal is to locate a student with 

respect to level of understanding in a narrow domain, a unidimensional data structure may 

suffice. If the goal is to report performance on a constellation of skills in a broad content area, a 

multidimensional data structure will provide more meaningful information.  

Diagnosis is often rendered by a teacher in a classroom setting, but the process can be 

automated by programming the rules for diagnosis into a computer-based system. In a recent 

report, Underwood (2007) reviewed six such systems for mathematics problem solving and 

identified them along several dimensions, including: How  knowledge, skills, and abilities 

(KSAs) were represented, how levels of proficiency for the KSAs were determined, and whether 

common errors were identified. She found that while all six systems were designed to identify 

common errors, they varied with respect to how the KSAs were represented and how the KSA 

proficiency levels were determined. 

The Unit of Diagnostic Evidence: Items Versus Item Sets 

Two main approaches are typically used when the goal is to assess mastery or to identify 

bugs or misconceptions. In Approach 1, items are developed so that each response to each item is 

interpretable with respect to diagnosis. In this approach, each possible student response is linked 

to at least one student idea. In Approach 2, items are developed as collections so that each 

observation consists of a set of responses to the items in the collection. Here, the unit of analysis 

is a set of responses, and the response to any particular item is usually not interpreted. Bart and 

Williams-Morris (1990) distinguished between item diagnostic properties and test diagnostic 

properties. Approach 1 focuses on the former while Approach 2 focuses on the latter. An 

assumption made by Bart and Williams-Morris in their work was that “…tests are diagnostic to 

the extent to which the constituent items are diagnostic” (p. 146). In practice, diagnostic item 

development often combines the two approaches. Several examples follow. 

Guttman and Schlesinger (1967) described how facet design may be used to inform the 

systematic construction of distractors in multiple-choice items. Their approach was based on the 

hypothesis that distractors that are more similar to the correct response are relatively more 

attractive than distractors that are less similar to the correct response. As they used the term, a 
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facet is a dimension along which a distractor may assume different values. Each option, 

including the correct response, represents a unique set of facet values. A distractor that shares a 

greater number of facet values with the correct response is considered more similar to it than a 

distractor that shares a lesser number of facet values with the correct response.  

On a test of analytical ability, Guttman and Schlesinger (1967) found that distractors that 

were more similar to the correct response were also more attractive. They suggested that the use 

of systematically designed distractors potentially provides a couple of advantages: First, since 

each response may be differentially scored, even short tests may provide valuable information, 

and second, the systematic construction of distractors may make it possible to identify common 

student errors. In Guttman and Schlesinger’s scheme, the design of each item makes use of 

Approach 1. The interpretation of a student’s performance on a test composed of such items, 

with respect to facets, makes use of Approach 2.  

In the context of developing diagnostic multiple-choice items for proportional reasoning, 

Bart, Post, Behr, and Lesh (1994) defined the properties of a semi-dense item. A semi-dense item 

has a one-to-one correspondence between each option and each cognitive rule in a cognitive 

microtheory (pp. 4–5). Bart et al. referred to the requirement that each cognitive rule should be 

represented among the options as exhaustive rule set usage (p. 4). Where diagnostic assessment 

development is concerned, a semi-dense item represents a useful standard, but it is an ideal that 

is difficult to achieve in practice. Developing semi-dense items for diagnosis is consistent with 

Approach 1. 

The classic work of Noelting (1980), also developed in the context of proportional 

reasoning, primarily used Approach 2. In each task, a child was asked to compare the relative 

taste of two solutions, each of which contained some amount of water and some amount of 

orange juice. For each task the options were the same: (a) Solution A is stronger, (b) Solution B 

is stronger, or (c) the two solutions have the same strength. Noelting designed his tasks to 

diagnose childrens’ levels of development, and the tasks were constructed to be interpreted as a 

set. The tasks were ordered according to the level of reasoning required. Easier tasks (for 

example, those with solutions with different amounts of water but the same amounts of orange 

juice) required only qualitative reasoning, while the hardest tasks required students to compare 

ratios by finding a common denominator.  
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Noelting (1980) used a scalogram analysis (see Guttman, 1944) to order the items by 

difficulty. To define the developmental stages, he grouped children who were able to answer 

items at similar levels of difficulty and labeled each stage in accordance with a Piagetian 

framework. A child’s developmental stage was interpreted with respect to the cognitive demands 

of the most difficult items he or she was able to answer. Noelting verified six of the seven stages 

he identified through the use of confirmatory factor analysis. 

Bart and Williams-Morris (1990) analyzed Noelting’s items with respect to two of the 

properties they had defined for a semi-dense item: response interpretability and response 

discrimination. Response interpretability refers to the requirement that each response be 

interpretable by a cognitive rule; response discrimination refers to the requirement that each 

response be interpreted by one and only one cognitive rule. They developed item indices to 

measure each of these properties. The proportion of responses that could be interpreted by at 

least one cognitive rule indicated the response interpretability of an item. Response 

discrimination for an item was calculated as the average discrimination across responses, where 

the discrimination for each response was inversely proportional to the number of cognitive rules 

that would result in that response. In the case where the response was not interpretable, 

discrimination was zero. 

An application of Approach 2 is concerned with detecting patterns of responses that 

reflect strengths and weaknesses for a set of target skills. Tatsuoka, Corter, and Tatsuoka (2004) 

and Birenbaum, Tatsuoka, and Yamada (2004) used the rule space method to compare student 

mastery patterns in mathematics, across countries. Students’ responses to eighth-grade 

mathematics items from the Third International Mathematics and Science Study-Repeat (TIMSS-

R) were used to infer patterns of mastery with respect to a set of attributes, and the mean 

attributes from different countries were compared. It was found that U.S. students were relatively 

weaker with respect to geometry content and logical reasoning process attributes. In this 

example, diagnosis focused on attributes which were interpreted with respect to a set of items, 

and the focus was on the performance of large subgroups. 

In a recent chapter, Luecht (2007) used a data augmentation approach to explore whether 

distractor selections from multiple-choice items could be used to yield more meaningful 

diagnostic subscores. The correlations among the augmented subscores were extremely high, 

however, so there was no evidence that information on multiple skills had actually been 
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extracted. The high correlations may have been due in large part to the inherent 

unidimensionality of the tests under study. Nevertheless, Luecht concluded that the approach 

may still be informative in situations where collateral multidimensional information can be 

extracted. This suggests that for tests that assess multiple skills by design, distractors may still 

provide additional useful diagnostic information. 

The DIAGNOSER (Hunt & Minstrell, 1994; Levidow, Hunt, & McKee, 1991) is a 

computer program that was developed to identify student facets. In the DIAGNOSER, each 

response option is linked to a facet, or student idea. The use of the term facet is somewhat 

different in the works of Minstrell (1992; 2001) and in the work of Guttman and Schlesinger 

(1967). Guttman and Schlesinger used the term to refer to a dimension of an item (in particular, a 

dimension of a distractor). As Minstrell used the term, a facet is a student idea linked to a 

particular level of understanding, and the idea is almost always content specific. Minstrell 

originally developed facets in the context of high school physics instruction, but they have since 

been extended to other domains, like statistics (Schaffner et al., 1996). To a large extent, 

DIAGNOSER items represent an application of Approach 1—each response option is linked to a 

facet, which represents a student idea. Each response constitutes an observation that provides 

evidence with respect to specific difficulties in understanding, as well as level of mastery (since 

facets are ordered from more expert to more problematic). 

DIAGNOSER items make use of Approach 2 as well, however. Facet clusters (Minstrell, 

2001, p. 420) consist of conceptually related facets that are applicable to a unit of instruction. 

Since the number of facets in a cluster typically exceeds the number of ideas that is relevant to a 

particular question, exhaustive rule set usage is not a requirement for the development of a 

particular item. A student’s response to a particular question thus provides evidence regarding a 

subset of facets (Approach 1), while responses to several questions provide evidence regarding 

standing with respect to a cluster (Approach 2). 

Briggs, Alonzo, Schwab, and Wilson (2006) developed a set of diagnostic multiple-

choice items to assess levels of understanding in Earth in the Solar System. Earth in the Solar 

System content is concerned with how objects in our solar system move to produce cyclical 

changes, for example between day and night or across the seasons. They first developed 

construct maps in the domain, which provided descriptions of evidence for different levels of 

understanding and associated them with score levels. The construct maps were based on prior 
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research findings of student understanding in the domain and were also informed by national 

standards for Grades 5 and 8. The items were designed so that each option corresponded to a 

developmental level from the construct map. Thus Briggs et al. incorporated theories of learning 

development and misconceptions, as well as requirements from the national standards into the 

design of their items. Because each option corresponds to a developmental level, Briggs et al. 

make strong use of Approach 1. They suggested that Wilson’s ordered partition model, a 

psychometric model that allows for the interpretation of particular responses, could be used to 

support a large-scale implementation of an assessment based on the items they developed. 

The use of Approach 2 is also implied by the Briggs et al. (2006) work. Their construct 

map provided a single developmental scale that pertained to concepts covered in Grades 5 

through 8. They developed items at the Grade 5 level and items at the Grade 8 level. Items 

developed for the Grade 5 level did not include options that represented the highest level from 

the construct map, which corresponded to the level of understanding expected from students at 

eighth grade (as reflected in the national standards documents). Items developed for the Grade 8 

level could include options that corresponded to developmental levels usually observed at the 

fifth grade, however. This scheme potentially allows for vertical comparisons across grades in at 

least one direction—for example, it is possible to identify an eighth grader operating at a level of 

development normally associated with the fifth grade. 

Smith, Wiser, Anderson, and Krajcik (2006) also provided an example of how an 

assessment can be developed in accordance with models of student development, or learning 

progressions. According to Smith et al., learning progressions are “…descriptions of 

successively more sophisticated ways of reasoning within a content domain based on research 

syntheses and conceptual analyses…” (p. 1), that “…should be organized around central 

concepts and principles of a discipline (i.e., its big ideas)…” (p. 2). In their work, Smith et al. 

proposed a learning progression for student understanding of matter and atomic molecular 

theory. For each of three grade bands (K-2, 3-5, and 6-8), levels of understanding were framed 

with respect to a common set of big ideas. In general, the levels of understanding are more 

nuanced and complete in the higher grade bands. For example, one component of a big idea is 

that students should understand that “mass and weight are conserved across a broad range of 

transformations” (Smith et al., Figure 1, p. 15). At the K-2 level, students are expected to 

understand that physical transformations such as breaking into pieces will conserve weight and 
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the “amount of stuff.” By Grades 6-8 however, they are expected to understand that “mass and 

weight are conserved in physical and chemical changes because atoms are neither created nor 

destroyed” (Smith et al., Figure 1, p. 15). 

Smith et al. (2006) also discussed how learning performances can provide evidence for 

student understanding of both scientific content and practice. Assessment items can be developed 

that elicit such evidence, and they developed several sample items for each grade band. Several 

of the tasks are diagnostic in the sense that particular learning performances are indicative of 

how far an idea has developed with respect to a learning progression. For example, in a sample 

task Smith et al. developed for Grades 3-5, students were first shown two solid rectangular 

prisms that were equal in volume and weight. They were asked to consider whether the two 

prisms could have been made of the same material. Then, they were shown two solid prisms that 

had equal volumes, but one prism was heavier than the other. Again, they were asked to consider 

whether the two prisms could have been made of the same material. Smith et al. suggested that 

students who have an early concept of density would answer yes to the first question but no to 

the second, whereas students who have not yet developed this concept might answer yes to both 

questions. 

Extensions to Diagnosis 

The discussion in the preceding section suggests that methods of diagnostic assessment 

have been extended to support both developmental and standards-based interpretations. Minstrell 

(2001, p. 148) proposed that a system that provides descriptions of students’ understanding 

should meet the following requirements: It should be grounded in research, it should specify 

learning expectations, it should characterize a progression from naïve ideas to the learning 

expectations, it should identify student difficulties, and it should be tractable to both 

theoreticians and practitioners in the field. The learning expectations might be state or national 

standards, or they might be competencies established as goals for a particular assessment. The 

goals for diagnostic assessment have expanded with the advent of standards-based reform and 

the recognition that understanding the trajectory of development in the target domain is 

necessary to help students reach learning expectations. 

Early work in diagnostic assessment focused on the identification of bugs and 

misconceptions. Errors have been identified that occur with very high frequency. For example, in 

proportional reasoning, the incorrect addition strategy (Hart, 1984) is very common. Research 
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has also examined the stability of bugs and misconceptions across contexts and within 

individuals. The general finding has been that students are more or less prone to certain errors 

given changes in context, and that individuals are not necessarily consistent in their reasoning. 

For example, Payne and Squibb (1990) found that the same student will tend to use different 

malrules, even on very similar algebra items.  Madhyastha, Hunt, Kraus, and Minstrell (2006) 

found that students did not generally endorse physics facets consistently, although consistency 

improved with both instruction and math ability. This result appears to agree with an observation 

made by Payne and Squibb that although students tend to be inconsistent in their application of 

mal rules, it is typically easier to diagnose students with greater levels of algebra skill. 

These findings suggest a course of action: Identification of common errors and 

misconceptions may be extremely useful for the purpose of guiding classroom instruction. 

Where making recommendations for an individual is concerned, consistency of responses is also 

important to evaluate. Common misconceptions may be addressed effectively via a class 

discussion. A student who responds inconsistently may require individual attention from the 

teacher. To the extent that inconsistent responses reflect weak understanding, direct, basic 

instruction may be necessary. 

Not all diagnostic assessment may be considered formative. Formative assessment can 

positively impact student learning, however (e.g., Black & Wiliam, 1998; Wiliam, Lee, Harrison, 

& Black, 2004). An example of how diagnostic items may be used formatively in the classroom 

is described by Ciofalo and Wylie (2006) and Wylie and Wiliam (2006)—teachers used 

diagnostic items individually to guide the course of instruction in real time. 

As the intended applications for diagnostic assessment expand, it will be necessary to 

extend and combine approaches to diagnosis in novel ways. This requirement was forecasted 

succinctly by Bejar (1984, p. 175), “…the traditional approach to the specification of content in 

terms of static taxonomies may not be appropriate given the dynamic and sequential nature of 

diagnostic assessment.”  

Item Type Considerations 

Not surprisingly, different item types are more or less suited for different aspects of 

diagnosis. Multiple-choice items are inexpensive and easy to score, and scoring accuracy is very 

high. Students can respond to them quickly, and are likely to interpret them correctly because the 

options cue the expected nature of the response. Multiple-choice items are ideal in situations 
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where the goal is to determine whether a student can recognize the correct response and reject 

incorrect but viable alternatives. Especially when students are at the early stages of learning, 

multiple-choice items may be valuable for detecting the presence of partial knowledge. 

The research summarized earlier supports the idea that diagnostic multiple-choice items 

may be used to efficiently identify student misconceptions and their associations with stages of 

development. Multiple-choice items have the disadvantage that a response (whether or not it is 

correct) may reflect a guess rather than a firmly held belief. Mathematics items in particular may 

be susceptible to backsolving (for further discussion of this strategy, see Braswell & Jackson, 

1995; Bridgeman, 1993). Multiple-choice items do not provide specific evidence regarding a 

student’s solution procedure or the details of his or her reasoning. This is not so much a 

weakness as a limitation. Multiple-choice items are highly efficient for collecting diagnostic 

information, particularly when the options have been constructed in accordance with a theory of 

learning in the domain. 

Both Bridgeman (1993) and Katz, Bennett, and Berger (2000) suggested that it may be 

useful to develop multiple-choice items that include common incorrect responses as distractors—

and the recent work of Briggs et al. (2006) suggests that ordered multiple-choice items may be as 

reliable as traditional multiple-choice items while providing greater diagnostic evidence. It is 

also worth pointing out that not all items that may be scored as multiple-choice must be 

presented in the standard format, with a stem followed by several options.  

Constructed-response items serve a complementary role in diagnostic assessment. They 

are more representative of real-world tasks than multiple-choice items and may discourage 

guessing. Constructed-response items of the “show all work” type provide highly specific 

information about the details of students’ solution methods. The scoring accuracy for 

constructed-response items is generally lower than for multiple-choice items, but some in 

mathematics can be scored quite accurately, even compared to multiple-choice. For example, 

Bennett, Steffen, Singley, Morley, and Jacquemin (1997) found very high accuracy rates for the 

mathematical expressions (ME) response type when users entered expressions on the computer. 

In their study, the accuracy rate for scoring the ME type was 99.62% with real response data. 

Scoring accuracy for responses that were designed to be difficult to score was lower (70%), but 

these responses were complex. By comparison, scoring accuracy for multiple-choice items is 

about 99.95% (J. McDonald, as cited in Bennett et al.).  
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Constructed-response items have the disadvantage that they can be expensive to score 

(even when scored automatically), and students usually take more time to respond to them. This 

means they can consume valuable time on an assessment or in the classroom. Nevertheless, 

because they are less amenable to backsolving, constructed-response items place different 

cognitive demands on the student—he or she must generate a response without the support of the 

options. Constructed-response items can also provide more evidence regarding the details of 

solution. Finally, they may be somewhat faster to develop than multiple-choice items with 

conceptually based distractors. This is not to suggest that a constructed-response item is easy to 

develop—additional care must be taken in the wording of the stem since there are no options to 

support its interpretation. 

In sum, multiple-choice and constructed-response items provide different but 

complementary evidence for diagnosis. In developing a diagnostic assessment, it may be very 

useful to use these item types together.  

Supporting Frameworks 

The outcome aspect of validity refers both to test interpretation and test use (Messick, 

1989, p. 20). Both are important to consider in the design and implementation of diagnostic 

assessment. Ideally, the construct is fully specified before item development begins. 

Increasingly, assessments are developed in accordance with cognitive models (e.g., Gorin, 2006). 

Gorin distinguished between more general cognitive models developed for the purpose of 

construct definition and more specific cognitive models specific to an item or item type. 

Although this paper focuses primarily on applications of the latter, it is assumed that cognitive 

models at both levels should be developed, and that a cognitive model that explains the construct 

should be drafted first. Following each round of empirical validation or evaluation for logical 

consistency between cognitive models at different levels, the models are typically refined. 

Diagnostic assessment can vary along all of the dimensions previously discussed, but 

there are a number of frameworks that are sufficiently general to guide the design of the 

underlying cognitive models. Examples of such frameworks include a framework for developing 

a cognitively diagnostic assessment (CDA; Nichols, 1994), evidence-centered design (ECD; e.g., 

Mislevy, Steinberg, & Almond, 2003), and the cognitive design system approach (Embretson & 

Gorin, 2001; Embretson, 1999). Nichols’ framework specified five steps critical to the 

development of a CDA, as follows:  
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1.   substantive theory construction 

2.   design selection 

3.   test administration 

4.   response scoring 

5.   design revision  

Step 1 refers to the construction of a general cognitive model for the purpose of construct 

definition, as described in Gorin (2006). This step is essential, though the discussion here is 

primarily concerned with Step 2, design selection. Nichols provided the following description of 

the design selection step: 

In this step, the test developer selects the observation and measurement designs. The 

selection is informed by the substantive base constructed in Step 1. Subsequently, the test 

developer constructs items or tasks that will be responded to in predictable ways by test 

takers with specific knowledge, skills, and other characteristics identified as important in 

the theory. The procedure for constructing assessments is the operationalization of the 

assessment design. (p. 587) 

In ECD, the student model is used to define the construct, while the task models specify 

features of tasks. Cromley and Mislevy (2004) extended ECD by incorporating misconceptions 

into a template structure. Shute, Graf, and Hansen (2005) described how ECD was applied to the 

development of the Adaptive Content with the Evidence-Based Diagnosis (ACED) system, a 

computer-based diagnostic assessment that focused on mathematical sequences suitable to assess 

at the eighth-grade level. 

In the introductory chapter to the edited book, Cognitive Diagnostic Assessment for 

Education, Leighton and Gierl (2007) reviewed research that has led to the development of 

CDA, including Nichols’ (1994) framework.  The goals of CDA are to provide evidence about 

students’ thought processes in a domain and to characterize their strengths and weaknesses. 

Leighton and Gierl concluded that developing a CDA requires both a strong cognitive theory and 

a means for scientifically validating the theory.  
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Item Models That Accommodate Different Diagnostic Dimensions and Item Types 

The usual method for designing item models for use in large-scale summative 

assessments is to select a set of previously calibrated source items. Each source item is 

parameterized; components of the item (both numbers and strings) are replaced with variables. 

The details for how to generalize a quantitative source item to an item model are described in 

Graf, Peterson, Steffen, and Lawless (2005). The parameterized source item then serves as a 

template for automatically generating instances (Bejar, 2002), or discrete items, from the item 

model. Instances are generated by instantiating variables in the template with particular values. 

This method of automatic item generation makes use of what is referred to as replacement-set 

procedures (e.g., Millman & Westman, 1989) and is now almost standard. Instances generated 

from an item model that relies solely on replacement-set procedures often appear quite similar. 

There has been research to explore advances in automatic item generation to allow for more 

abstract forms of model description (Deane, Graf, Higgins, Futagi, & Lawless, 2006; Deane & 

Sheehan, 2003; Higgins, Futagi, & Deane, 2005). 

Regardless of the method used for generation, item model development should not be 

item centric—rather, item models should be designed in accordance with more general schemas 

(for examples of this approach, see Enright, Morley, & Sheehan, 2002 and Singley & Bennett, 

2002). Although software that uses replacement-set procedures for automatic generation cannot 

be used to characterize item models at abstract levels of description, it is still possible to design 

item families, where each family is an organized collection of item models that represents 

variations on a common schema. 

Developing Diagnostic Item Models 

In this part of the paper, I consider how the research summarized earlier can inform 

principles for developing diagnostic item models. The discussion of item types suggests that for 

diagnostic assessment, there may be a need for either multiple-choice or constructed-response 

item models, depending on the setting and the kinds of evidence that need to be collected. 

Variables may be included in any part of an item model, including the stem, the key, and the 

options, if there are any. Constructed-response item models consist of a stem model and a key 

model, while multiple-choice item models consist of a stem model, a key model, and distractor 

models. 
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Three example item models are shown in Table 1; one item model is shown in each row. 

Since multiple-choice items and constructed-response items serve potentially complementary 

roles in diagnostic assessment, these examples have been deliberately structured so that they 

could generate either multiple-choice or constructed-response instances. The first column of 

Table 1 provides a high level description of the problem setting and goal. The second column 

shows the parameterized presentation frame, or template, for the item model. The third column 

defines the variables and constraints used in the model, and the fourth column shows an instance 

that could be generated from the model. 

The final column in Table 1 shows links to the National Council of Teachers of 

Mathematics (NCTM) curriculum focal points (CFPs; 2006), which were designed to highlight 

essential content themes in preK-8 mathematics. The themes addressed by the examples are 

given in the last column. The first item model example is a very basic skills question that asks 

the student to find the area of a circle given its radius. When an instance is generated, the 

variable that represents the radius is replaced with a numeric value. The instances generated from 

this model are suitable for seventh grade. Some common errors that might be expected are 

confusing the formula for circumference with the formula for area (Error 1) or a confusion 

between radius and diameter (Error 2). These error models might be represented as distractors in 

a multiple-choice instance, or they might be used to interpret incorrect responses to a 

constructed-response instance. Morley, Lawless, and Bridgeman (2005) took a similar approach 

in their modeling of answer-choice rationales. 

The second item model example in Table 1 is a word problem, and it requires that the 

student represent a situation as a mathematical expression. Of the components that have been 

parameterized, only two are likely to influence item difficulty: The relation between the original 

distance between the arms of the compass and the final distance, and the value for this change. 

As with the first item model example, the Error 1 and Error 2 models refer to confusions between 

area and circumference, and radius and diameter, respectively. Error 3 is more conceptual: A 

student who makes this error probably has an insufficient model of the problem and has likely 

neglected to consider the original width between the arms of the compass in finding the 

expression. The instances generated from this model might also be suitable for seventh grade. 

 



Table 1 

A Family of Three Diagnostic Item Model Examples 

Description of model Presentation frame Variables and constraints Instance Link to NCTM CFPs 
r is an integer between 3 and 
15, inclusive. 

 

Given the radius of a 
circle, find its area. 

What is the area of a 
circle with radius r? 

What is the area of a circle 
with radius 4? 

:16

In Grade 7, students use 
concepts from 
geometry, 
measurement, and 
algebra to model and 
solve a large variety of 
problems, including 
those involving finding 
areas of circles 
(National Council of 
Teachers of 
Mathematics [NCTM], 
2006, p. 19) 

1: 8
2 : 64

Key
Error
Error

π
π
π( )

2

2

:
1: 2

2 : 2

Key
Error

Error

π
π

π

r
r

r

 

Name’s compass is set 
so that the distance 
between the ends of its 
arms is length r units. 
Name draws a circle. 
Name.PN adjusts one 
of the arms so that the 
distance between the 
ends is s units relation 
than it was before, and 
draws a second circle. 
Write an expression 
that represents the area 
of the second circle. 

Name is a string representing a 
name. 

Use an expression to 
represent what 
happens to the area 
of a circle if a 
constant is added to 
or subtracted from 
its radius.  

14

Name.PN is a string 
representing a pronoun that 
agrees with Name. 

s is a integer between 1 and 15, 
inclusive. 

relation is a string that is either 
“greater” or “less.” 

relation.sign is a string that 
varies with relation. If 
relation is “greater,” then 
relation.sign is “+”; otherwise 
relation.sign is “−”. 

( )
( )
( )( )

2

2

2

: .

1:2 .

2: 2 .

3:

Key r relation sign

Error r relation sign

Error r relation sign

Error

π

π

π

π

s

s

s

s

Anita’s compass is set so 
that the distance between 
the ends of its arms is 
length r units. Anita 
draws a circle. She 
adjusts one of the arms so 
that the distance between 
the ends is 3 units greater 
than it was before, and 
draws a second circle. 
Write an expression that 
represents the area of the 
second circle. 

( )
( )
( )( )

2

2

: 3
1: 2 3

2: 2 3
3:9

Key r
Error r

Error r
Error

π
π

π
π

+
+

+
 

 

r

(Table continues) 
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Table 1 (continued) 

Description of 
model 

Presentation frame Variables and constraints Instance Link to NCTM CFPs 

Given two points in 
the Cartesian plane, 
one on the 
circumference of a 
circle and another at 
its center, find the 
area of the circle. 

The coordinates of 
two points in the xy-
plane are (Xa, Ya) and 
(Xb, Yb). Find the 
area of a circle that 
has one of these 
points as its center 
and the other on its 
circumference. 

Xa is a nonzero integer between  
-5 and 5, inclusive. 

Ya is a nonzero integer between  
-5 and 5, inclusive. 
ΔX is a nonzero integer between 
-9 and 9. 
ΔY is a nonzero integer between  
-9 and 9. 

2 2

0; 0

4

= +

= +

≠ ≠

+ >

b a

b a

b b

X X ΔX
Y Y ΔY
X Y

ΔX ΔY

 

( )
( )

( )

2 2

2 2

2 2

2 2

:

1: or

2 : 2

Key

Error

Error

π

π

π

π

+

+

+

+

a a

b b

ΔX ΔY

X Y

X Y

ΔX ΔY

 

Error 3: Can’t solve the problem 
because I don’t know which 
point is at the center and which 
is on the circumference. 

The coordinates of two 
points in the xy-plane are 
(-3, 1) and (-1, -6). Find 
the area of a circle that has 
one these points as its 
center and the other on its 
circumference. 

: 53Key
1:10 or 37

2 : 2 53

Error

Error

π
π π

π

 

Error 3: Can’t solve the 
problem because I don’t 
know which point is at the 
center and which is on the 
circumference. 

“…They apply the 
Pythagorean theorem 
to find distances 
between points in the 
Cartesian coordinate 
plane to measure 
lengths…” (NCTM, 
2006, p. 20) 

Note. Item model variables are shown in bold. NCTM = National Council of Teachers of Mathematics; CFP = curriculum focal points. 



The final item model example in Table 1 is designed for eighth grade, and builds on the 

knowledge required by the first item model. Now, instead of finding the area of a circle for 

which the radius is given, students must apply the Pythagorean theorem to find the radius of a 

circle in the Cartesian plane. Error 1 represents the condition where a student misinterprets the 

radius as the distance between the origin and one of the two points. Error 2 represents confusion 

between area and circumference. Error 3 is conceptual and suggests a recommendation to the 

student: It is helpful to draw a diagram and to consider different possible cases.  

It is interesting to consider the different kinds of evidence that the last example might 

provide when presented in either multiple-choice or constructed-response format. The student 

may or may not recognize that in order to find the area, it is not necessary to calculate the radius 

by taking the square root of ( )22X YΔ + Δ . If the item is presented in constructed-response 

format and the student shows work, it will be evident from the response whether the student has 

calculated the radius by taking the square root and then squared it again to find the area. When 

the instances are presented in multiple-choice format, a student’s solution method will not be 

directly observable. It is predicted, however, that students who calculate the radius will find 

instances for which the radius squared is not a perfect square considerably more difficult. 

Students who do not calculate the radius should find both categories of instances relatively 

comparable in difficulty.  

The final example may also be difficult due to the vocabulary. The term circumference 

can refer either to a measure or a boundary; in this case the second definition is intended. If the 

meaning of the word circumference is not clear from the context, the student may have difficulty 

with the task. Like other English words, mathematics vocabulary words often have multiple 

meanings, and this can be challenging for students (Thompson & Rubenstein, 2000). The final 

example could be reworded as follows: Given two points in the Cartesian plane, one on the circle 

and another at its center, find the area of the circle. This wording potentially poses different 

difficulties, however: Although the wording on the circle is technically correct, many students 

may confuse circle with circular region. A student who mistakenly interprets circle to mean 

circular region may not know how to answer the question, even if he or she understands the 

concepts involved. A benefit to a model-based approach to test development is that one can 

generate instances with different wording to evaluate the impact of linguistic features, such as 
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vocabulary, on difficulty. Approaches to automatic item generation that go beyond replacement-

set procedures and allow for alternate phrasings may be especially useful for this purpose. 

At this point, quite a bit of research has systematically explored the impact of various 

item model variables on difficulty (e.g., Bejar, 1993; Bejar & Yocom, 1991; Embretson, 1999; 

Enright et al., 2002; Graf et al., 2005; Newstead, Bradon, Handley, Evans, & Dennis, 2002).  

The item models shown in Table 1 form a natural family. The first model is a basic skills 

problem; the second model requires representation. The last model builds on the knowledge 

required by the first model. Because the errors have also been modeled in these examples, 

misconceptions and/or bugs are consistently represented across instances. From an experimental 

design standpoint, this approach is valuable, because it allows for a strong test of 

misconceptions, disambiguated from a particular context. The more general the item model, the 

stronger the test. 

Analyzing and Validating Diagnostic Item Models 

The previous discussion describes how diagnostic items can be generalized and how 

errors can be modeled. As with discrete item development, one could apply the semi-dense 

framework of Bart et al. (1994) to guide the development of diagnostic item models. Table 1 

suggests how this might occur. Modeling errors in accordance with cognitive rules ensures that 

at least some possible responses to all instances will be interpretable. So modeling errors may 

enhance the response interpretability of all generated instances. The response discrimination 

property may also inform the development of item models. The item model author must consider 

the discrimination of each response to each instance. As values change across instances, it is 

possible that while some instances include responses that are interpretable by one and only one 

cognitive rule, other instances include responses that are interpretable by more than one 

cognitive rule.  Consider the first item model in Table 1—if the radius were allowed to assume a 

value of two units, the response “4π” might be explained by either the key or Error 1. Thus the 

response discrimination for this instance would be lower than for other instances. Typically, 

constraints may be introduced to ensure that all instances have comparable levels of response 

discrimination. If responses are modeled in accordance with cognitive rules, the response 

discrimination property can be satisfied for all instances by setting constraints so that no two 

responses are equivalent. 
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The examples in Table 1 also show how meaningful sets of item models can be 

constructed. A student’s responses to instances generated from all three models in Table 1 

provide more information about his or her understanding concerning the area of a circle than his 

or her responses to instances generated from a single item model from Table 1. Students who can 

successfully respond to instances generated from the first item model but not to instances 

generated from the second or third item models have learned how to calculate area given the 

radius but cannot extend this knowledge to new situations or applications. Most students who 

can successfully respond to an instance generated from the second or third model will probably 

also respond correctly to an instance generated from the first model; but it might be expected that 

different students would have more or less difficulty with instances generated from either the 

second or the third models, depending on whether they are relatively more skilled at representing 

situations as algebraic expressions or calculating distances in the Cartesian plane. Students who 

can successfully respond to instances generated from all three models have demonstrated a 

relatively broader scope of understanding where the relationship between radius and area is 

concerned. 

The examples in Table 1 are just for the purpose of illustration. Ideally, errors are 

modeled in accordance with findings from the literature and validated through empirical study. 

The items developed as part of the Diagnostic Items for Math and Science (DIMS) project 

(Ciofalo & Wylie, 2006; Wylie & Wiliam, 2006) were based on a review of the literature and the 

expertise of practitioners. A recent pilot study investigated the comparability of instances 

generated from item models based on four different DIMS questions for eighth-grade 

mathematics (Graf, Ohls, Klag, & Wylie, 2006). Ten instances were generated from each model, 

and students responded to each instance. One finding was that while the instances generated 

from these item models were not quite isomorphic with respect to difficulty, the misconceptions 

endorsed across instances were reasonably consistent. This finding suggests that some distractors 

were attractive due to the misconceptions they represented, rather than to the particular context 

in which they appeared. It has been suggested that an item modeling approach to automatic item 

generation may enhance validity (Bejar, 1993; Bejar & Yocom, 1991). It is likely that it may be 

used as a research methodology for exploring validity in diagnostic assessment contexts as well. 
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Summary 

The first part of this report discussed dimensions of diagnosis and approaches for creating 

and analyzing diagnostic items. Diagnostic items can be developed so that they may be 

interpreted individually or as part of a set; these approaches are often used together. Ideally, the 

development of a diagnostic assessment is informed by both a higher level cognitive model that 

defines the construct and a more specific cognitive model that distinguishes the roles of specific 

item types in how the construct is assessed. Multiple-choice and constructed-response formats 

serve complementary roles in diagnosis, and each is best suited for different purposes.  

The second part of the paper focused on the implications of this discussion for the development 

and validation of diagnostic item models. It was described how item models can be designed to 

accommodate both approaches to diagnostic item development, and that they may be used to 

generate instances in different response formats. Finally, it was suggested that item modeling is a 

potentially valuable research tool in the validation of diagnostic assessment. 
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